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Abstract
We study the average density of resonances, 〈ρ(x, y)〉, in a semi-infinite
disordered chain coupled to a perfect lead. The function 〈ρ(x, y)〉 is defined in
the complex energy plane and the distance y from the real axes determines the
resonance width. We concentrate on strong disorder and derive the asymptotic
behaviour of 〈ρ(x, y)〉 in the limit of small y.

PACS numbers: 03.65.Yz, 03.65.Nk

1. Introduction

Open quantum systems often exhibit the phenomenon of resonances. Resonances correspond
to quasi-stationary states which have a long life time but eventually decay into the continuum.
(A particle, initially within the system, escapes to infinity.) They are characterized by complex
energies, Ẽα = Eα − i

2�α , which correspond to poles of the S-matrix on the unphysical sheet
of the complex energy plane [1, 2]. There are many examples of resonances in atomic and
nuclear physics. More recently, there has been much interest in resonant phenomena in the
field of chaotic and disordered systems (for recent reviews see [3, 4]).

There is considerable amount of work concerning the distribution P(�) of resonance
widths in one-dimensional disordered chains [5–9]. Numerical studies presented in that work
demonstrate that, in a broad range of �, P(�) ∝ �−γ , with the exponent γ being close to
1. (This behaviour is not restricted to disordered chains, but pertains also to two- and three-
dimensional systems with localized states [7, 9]). An intuitive argument, which assumes a
uniform distribution for the localization centres of exponentially localized states, leads to a
(1/�)-behaviour [7–9]. The analytical calculation in [8], performed for a one-dimensional
continuous (white-noise) potential, exhibits this behaviour for sufficiently small �, followed
by a sharp cut-off at still smaller �, due to the finite size of the sample. It is also shown in
[8] that in a broad range of �, P(�) is well fitted by a function �−1.25. In the present paper
we develop an analytical approach for a discrete, tight-binding random chain. We treat the
problem in the limit of strong disorder and derive the asymptotically exact (1/�)-behaviour
for a semi-infinite system.
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2. The model and its effective Hamiltonian

We consider a semi-infinite disordered chain coupled to a (semi-infinite) perfect lead.
n = 1, 2, . . . , designate sites along the chain. Each site of the chain is assigned a site
energy, εn. Different εn’s (n = 1, 2, . . .) are independent random variables chosen from some
symmetric distribution q(ε). Sites of the lead are labelled by n = 0,−1,−2, . . . . All sites
of the lead are assigned εn = 0. The lead simulates the free space outside the chain. All
nearest-neighbour sites of the full system (chain + lead) are coupled to each other by a hopping
amplitude t, so that a particle, initially located somewhere within the chain, will eventually
escape into the lead.

The most direct approach to the problem of resonances amounts to solving the stationary
Schrödinger equation, for the entire system, with the boundary condition of an outgoing wave
only. This condition, which makes the problem non-Hermitian, describes a particle ejected
from the system. The Schrödinger equation with such a boundary condition admits complex
eigenvalues Ẽα , which correspond to the resonances [1, 2]. This kind of approach, which
leads in a natural way to a non-Hermitian effective Hamiltonian, has been used for a long
time in scattering theory, including scattering in chaotic and disordered systems ([4, 10], and
references therein). For our system the approach amounts to solving the infinite set of coupled
equations

−tψn+1 − tψn−1 + εnψn = Ẽψn (−∞ < n < ∞). (1)

We recall that εn = 0 for n < 1 (the lead) and it is random for n � 1 (the chain).
Equation (1) is to be solved subjected to the boundary condition ψn ∝ exp −ik̃n , corresponding
to an outgoing wave in the lead. The complex wave vector k̃ determines Ẽ according to
Ẽ = −2t cos k̃. It is straightforward to eliminate from equation (1) all ψn’s with n < 1;
thus reducing the problem to a system of equations for the amplitudes ψn on the sites of the
disordered chain alone (n = 1, 2, . . .).

−tψn+1 − tψn−1 + ε̃nψn = Ẽψn (n = 1, 2, . . .) (2)

with the condition ψ0 = 0. Here ε̃n = εn for n = 2, 3, . . . , but not for n = 1. This end
site is assigned a complex energy ε̃1 = ε1 − t exp ik̃ which describes coupling to the outside
world. Thus, the resonances are given by the complex eigenvalues of the non-Hermitian
effective Hamiltonian defined in (2). Note that equation (2) does not constitute a standard
eigenvalue problem because ε̃1 contains k̃, which is related to Ẽ. The problem is often
simplified by fixing k̃ at some real value, consistent with the value of energy near which one is
looking for resonances. Such simplification corresponds to replacing the ‘exact resonances’
by ‘parametric’ ones [5]. There are indications that for sufficiently narrow resonances the
‘parametric’ and the ‘exact’ distributions are close to one another. In this paper we restrict
ourselves to ‘parametric’ resonances. For instance, close to the middle of the energy band we
set k̃ = π/2, thus arriving at the effective Hamiltonian

(Heff)nm = ε̃nδnm − tnm (n = 1, 2, . . .), (3)

where tnm = t for nearest neighbours (and zero otherwise), and ε̃1 = ε1 − it . Let us repeat
that all site energies, except for ε̃1, are real. The imaginary part −it of ε̃1 accounts for the
coupling of the chain to the lead, via the hopping amplitude t connecting site 1 to site 0. It is
convenient to slightly generalize the model by assigning to this particular amplitude a value t ′,
which can differ from all the other hopping amplitudes t. This allows us to tune the coupling
from t ′ = 0 (closed chain) to t ′ = t (fully coupled chain). In what follows we set t = 1 and
denote the dimensionless coupling strength v ≡ t ′/t .
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3. The average density of resonances

Resonances correspond to complex eigenvalues of Heff , i.e., to the poles of the resolvent

G̃ = 1

z − Heff
(4)

in the lower half of the complex energy plane. We denote these poles by zα = xα +iyα . (These
are just the complex energies Ẽα = Eα − i

2�α , of section 1, in units of t which we set to 1.)
The average density of these poles is defined as

〈ρ(x, y)〉 =
〈∑

α

δ(x − xα)δ(y − yα)

〉
, (5)

where 〈· · ·〉 denotes disorder averaging, i.e., averaging over all realizations of the set {εn} of
the random site energies.

In order to appreciate the difference between 〈ρ(x, y)〉 and the probability distribution,
P(x, y), of resonance width y (for some fixed x) let us consider for a moment a finite chain, of N
sites. In this case P(x, y), by definition, is equal to 〈ρ(x, y)〉 divided by N. When N increases,
P(x, y) ‘runs away’ towards smaller and smaller y’s, and in the N → ∞ limit it approaches
δ(y). (Indeed, for a semi-infinite chain an eigenstate will be localized, with probability 1, at
infinite distance from the open end and, thus, will be ignorant about the coupling to the external
world.) On the other hand, 〈ρ(x, y)〉 does have a well-defined N → ∞ limit, for any fixed
(non-zero) y. To clarify this assertion, we begin with a closed semi-infinite chain (v = 0).
In this case all states are localized (yα = 0)—some close to the end (site 1) and some further
away. When the chain is opened (v = 1), localized states turn into resonances. The point is
that for fixed y (and x) the main contribution to 〈ρ(x, y)〉 will come from states that (for v = 0)
were localized around some optimal distance d(x, y) from the open end. Therefore distant
pieces of the chain do not contribute to 〈ρ(x, y)〉 and a well-defined N → ∞ limit exists.
The N necessary for achieving this limit will, of course, depend on y (and x) but the limit will
eventually be achieved for any y, however small (different from zero). Thus, although for any
finite N,P (x, y) and 〈ρ(x, y)〉 differ only by the normalization factor N, it is 〈ρ(x, y)〉 that
has a meaningful N → ∞ limit. 〈ρ(x, y)〉 may be expressed in terms of the resolvent G̃ as
[11, 12]

〈ρ(x, y)〉 = 1

2π
(∂x + i∂y)〈Tr G̃(x, y)〉. (6)

One can interpret the zα’s as the positions of unit electric point charges in the plane,
which give rise to an electric field E = Ex x̂ + Ey ŷ. In this picture, one has simply
Tr G̃(x, y) = Ex − iEy , and (6) is then interpreted as the Poisson equation for the averaged
electric field and charge density. Equation (6) holds also for a closed chain if G̃(x, y) is
replaced by G(x, y), where the untilded G is the resolvent of the Hermitian Hamiltonian of
the closed chain. In this case all the charges must lie on the real axis. Therefore, for any y

different from zero, one can rewrite (6) as

〈ρ(x, y)〉 = 1

2π
(∂x + i∂y)〈Tr (G̃ − G)〉. (7)

The advantage of this representation is that, although both Tr G̃ and Tr G diverge in the
N → ∞ limit, Tr(G̃ − G) remains finite. (Of course, it is still perfectly all right to use (6),
with the proviso that the derivative with respect to y is taken before taking the N → ∞ limit.)

The electrostatic analogy just mentioned makes it clear that 〈Tr G̃(x, y)〉 cannot be a
complex analytic function of z = x + iy, but must depend separately on x and y. This lack of
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analyticity makes the computation of 〈ρ(x, y)〉 a more difficult task than that of the density of
states for a closed (Hermitian) system. In the latter case there is a well-known representation
of the resolvent

Gnn(z) = 1

z − εn − 
n(z)
, (8)

where 
n(z) is the self-energy at site n. Let us stress that (8) applies to a specific realization of
random site energies {εn}, i.e., 
n(z) is a random quantity which depends on the set {εn}. The
statistical treatment of 
n(z) forms the basis of many studies of the localization problem [13],
starting with the original work of Anderson [14]. The notion of self-energy can be generalized
to our non-Hermitian problem, and the analogue of (8) is

G̃nn(z) = 1

z − εn − 
̃n(z)
. (9)

This equation is essentially a definition of 
̃n(z). It is convenient to assign the imaginary
term −iv to 
̃1(z) rather than to the ‘bare’ energy of the first site, so that all site energies,
{εn}, in (9) are real and are the same as for the corresponding closed chain. The term −iv will
appear as a boundary condition for the self-energy and will play a crucial role, as demonstrated
below.

In terms of the locator expansion [13, 14] 
̃n(z) can be represented as a sum of paths
which start at site n, visit other sites and then return (only once!) to the starting point n. Since
the paths consist of steps connecting nearest neighbours (to the left or to the right), it is clear
that 
̃n(z) can be decomposed into two pieces, ‘left’ and ‘right’:


̃n(z) = L̃n(z) + Rn(z). (10)

The ‘left’ self-energy, L̃n(z), depends only on the energies of sites to the left of site n, i.e., on
εj ’s with 1 � j < n. Similarly, Rn depends only on εj ’s with j > n and, thus, it is ignorant
about the fact that the chain is coupled to the outside world, via site 1 (that is why the Rn are
not tilded). The reason for decomposing 
̃n(z) into L̃n(z) and Rn is that these quantities obey
simple recursion relations, which can be iterated to obtain their probability distributions:

L̃j (z) = [z − εj−1 − L̃j−1(z)]
−1 (11)

and

Rj(z) = [z − εj+1 − Rj+1(z)]
−1. (12)

Relation (11) has to be iterated starting with j = 2, with the ‘initial condition’ L̃1 = −iv.
Relation (12), for the semi-infinite chain considered in this paper, leads to a stationary,
n-independent distribution for the variable Rn. We will not need this distribution in the
forthcoming calculation, restricted to the case of strong disorder.

4. Strong disorder

Strong disorder means that a typical value of εn is much larger than t = 1, i.e., the distribution
of site energies, q(ε), is very broad. In this case the above recursion relations simplify
considerably. The real part of the self-energy can be neglected in comparison with εn, so that
at any site n the real part of the resolvent is Re G̃nn(z) ≈ (x − εn)

−1, which is the same as for
the closed chain. Thus, the real parts of the two resolvents in (7) cancel out and one obtains

〈ρ(x, y)〉 = − 1

2π
∂y〈Tr Im(G̃ − G)〉. (13)
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Furthermore, Im G̃nn (see (9)) is dominated by Im L̃n(z) and can be approximated as

Im G̃nn = In − y

(x − εn)2 + (In − y)2
≈ πδ(x − εn)sign(In − y) (14)

where, in order to avoid cluttering the notations, we denote Im L̃n(z) ≡ In. Since εn and In

are independent random variables, the averaging of (14) is done in two steps: first over εn,
which gives the strong disorder limit of the density of states, q(x), and then over In, with the
yet unknown distribution P̃n(I ). The latter is governed by the recursion relation (11), which
in the strong disorder limit simplifies to

Ij = Ij−1

(x − εj−1)2
. (15)

This equation, as well as the previous one, applies for n � 2. Site n = 1 provides the initial
condition I1 = −v. The recursion relation (15) ‘propagates’ the information from the open
end of the chain (site 1) to distant sites. Site 1 is special and should be excluded from the
trace in (13). This is because I1 has a fixed value, different from y. Using the electrostatic
analogy, one can say that a charge, located away from the point (x, y) cannot produce a
singularity at this point . Actually, (15) is valid only up to a point when the typical value of I
becomes of order y ( recall that we are interested in y fixed but arbitrarily small, i.e., in the
‘small-y’ asymptotic behaviour of 〈ρ(x, y)〉). When such a small value of I is reached, the
initial condition, i.e., the value of v, is forgotten, and there is no contribution to 〈ρ(x, y)〉)
(more precisely, both Im G̃ and Im G become very small and, moreover, cancel each other).
In summary, averaging (14) with the distribution P̃n(I ) and taking the derivative with respect
to y, one obtains from (13) (with the G-term neglected):

〈ρ(x, y)〉 = q(x)

∞∑
n=2

P̃n(y). (16)

Equation (16), supplemented by the recursion relation (15), enables us to obtain the
asymptotic (1/y)-behaviour, as we now explain. Note that the random variables In are
negative, so that resonances are located in the lower half-plane of the complex variable z.
It is more convenient to work with the absolute value, |In|, and to define y as positive, i.e.,
〈ρ(x, y)〉 is the average density of resonances with width y (at energy x). Defining, instead
of |In|, a new variable, tn = ln |In|, and designating its distribution as Wn(t), we have, instead
of (16),

〈ρ(0, y)〉 = q(0)
1

y

∞∑
n=2

Wn(t), t = ln y, (17)

where we set x = 0 (middle of the band). It follows from (15) and the initial condition
|I1| = v = 1 that

tn = −2
n−1∑
j=1

ln|εj |, (18)

so that

Wn(t) =
〈∫ c+i∞

c−i∞

dp

2π i
ep(t−tn)

〉
=

∫ c+i∞

c−i∞

dp

2π i
eptνn−1(p), (19)

where c is some real number and

ν(p) =
∫

dεq(ε) e2pln|ε|. (20)
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Summing the geometric series in (17) we obtain

〈ρ(0, y)〉 = q(0)
1

y

∫ c+i∞

c−i∞

dp

2π i
ept ν(p)

1 − ν(p)
, t = ln y. (21)

This equation makes sense if |ν(p)| < 1. A sufficient condition for this inequality is that
c be negative and small, so that we have to choose the contour somewhat to the left of the
imaginary axis in the complex p plane. In order to prove the (1/y)-behaviour, in the small
y limit, we have to verify that the integral in (21) approaches a constant (non-zero) value for
t → −∞. It is intuitively quite obvious that in this limit, and for |c| 	 1, the integral will be
dominated by the vicinity of the point p = 0, near which ν(p) ≈ 1 + 2p〈ln|ε|〉. For strong
disorder, 〈ln|ε|〉 is positive and equal to the inverse localization length 1/ξ (in the middle of
the band). Replacing in (21) (1 − ν(p)) by (−2p/ξ), we obtain

〈ρ(0, y)〉 = q(0)
1

y

∫ c+i∞

c−i∞

dp

2π i
ept ν(p)

(−2p/ξ)
= q(0)ξ

2y
. (22)

Note that, since t is negative, the integration contour should be closed in the right half-plane,
where Rep is positive, so that an extra minus sign is acquired. The formal proof of equivalence
between (21) and (22), in the t → −∞ limit, is achieved by studying the difference between
the two expressions. Let us denote by J and J ′ the integrals in (21) and (22), respectively. In
both integrals c cannot be set equal to zero, because the integrand would diverge at p = 0.
However, this divergence is cancelled in J − J ′, so that for this quantity one can integrate
directly along the imaginary p-axis. Moreover, since ν(p), for p purely imaginary, is just the
characteristic function of the distribution for the variable 2 ln |ε|, it must decrease faster than
1/|p| for large values of p. Therefore one can use the Riemann–Lebesgue lemma to prove
that J − J ′ approaches zero in the t → −∞ limit. This completes the proof of the main
result, (22), of our paper. Equation (22) gives the asymptotically exact expression for the
average density of resonances in a semi-infinite, strongly disordered chain.
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